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Abstract. Morphological Associative Memories, an associative memory model
which is based on the basic operations of Mathematical Morphology, has been
shown to surpass the classical models in practically every aspect. On the other
hand, Binary Decision Diagrams have been successful forms to represent Boo-
lean functions. In this paper the authors propose the use of Binary Decision
Diagrams to represent morphological associative memories in
two important and very active areas of contemporary scientifi
proving the applicability and benefits shown by both areas.

order to merge
¢ research, im-

1. Introduction

Binary Decision Diagrams (BDDs) appeared two decades ago with Bryant’s seminal
article [1]. This work represented a breakthrough in describing digital circuits and
processes of hardware verification. Since then, many authors have developed research
works in this area, trying to improve BDDs ability to represent data or the
of the algorithms that manipulate them [2-12]. BDDs have been so superior to prior
models of Boolean functions representation that currently they are the state-of-the art
data structure to represent Boolean functions and verify circuit correctness in digital
circuit Computer Aided Design (CAD) applications [11]. On the other hand, associa-
tive memories have been an active area for research in computer sciences by roughly
half a century. The ultimate goal of an associative memory is to correctly recall com-
plete patterns from input patterns [13-15]. These patterns might be altered with addi-
tive, subtractive or mixed noise. The classical era of associative memories, which
includes models such as the Lernmatrix [16], the Correlograph [17] and the Linear
Associator [18-19], is represented by the model developed by Hopfield [20], which is
simultaneously an associative memory and a neural network. In the late 1990s mor-
phological associative memories were developed by Ritter et. al. [21], surpassing the
learning and pattern recall capabilities offered by all previous models. Morphological
associative memories are based in Mathematical Morphology [22-24].

In this paper we propose the use of Binary Decision Diagrams to represent Mor-
phological associative memories. By doing so, we will be able to merge two impor-
tant and very active areas of contemporary scientific research, with the intention of

efficiency
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improving and broadening the applicability of both models, Binary Decision Dia-
grams and Morphological Associative Memories. The remaining of the paper is or-
ganized as follows. In Sections 2 a survey of BDDs is provided. Section 3 is focused
on explaining the Morphological associative memory model. Section 4 contains the
core proposal. Section 5 is finally devoted to conclusions.

2. Binary Decision Diagrams

Boolean Algebra is, along with Set Theory, the foundation of all sciences. However,
digital systems design and computer sciences are even more reliant on Boolean Alge-
bra: the basic units for every piece of data, every circuit, and every operation are
Boolean variables and Boolean operations. Many problems in digital logic design and
testing, artificial intelligence, and combinatorics can be expressed as a sequence of
operations on Boolean functions [1]. However, in order to properly employ Boolean
Algebra, it is necessary to devise forms of representing and manipulating Boolean
functions in a symbolic manner. Problem is, many of the tasks one would like to
perform with Boolean functions, such as satisfiability or equivalence testing, require
solutions to NP-Complete or coNP-Complete problems [25]. Therefore, many forms
to represent and manipulate Boolean functions have arisen, being truth tables, Kar-
naugh maps and Disjunctive Normal Form some classical examples. A different ap-
proach, which has seen a lot of success, becoming a very important field of study, is
that of Ordered Binary Decision Diagrams (OBDD), proposed initially by Bryant in
his seminal article [1].

An OBDD is defined as a rooted, acyclic, and directed graph with a vertex set V'
containing two types of vertices: terminal and nonterminal. A nonterminal vertex v
has as attributes an argument index indat(v)e { LK ,n} , and two children low(v ,
and high(v)e ¥ , while a terminal vertex v has as attribute a value value(v) € { 0,1 } .

Furthermore, for any nonterminal vertex v, if Jow(v) is also nonterminal, then we must
have index(v) < index(low(v)). Similarly, if high(v) is nonterminal, then we must have
index(v) < index(high(v)) [1, 25). In order for an OBDD to be reduced, thus becom-
ing a Reduced Ordered Binary Decision Diagram (ROBDD, usually referred to as
BDD), it needs to comply with two restrictions: (i) it does not contain distinct vertices
vand v’ such that the subgraphs rooted by them are isomorphic, and (ii) it contains no
vertex v with low(v) = high(v) [1]. In this way, all redundancies of the graph are
erased and the number of nodes is reduced to the minimum for the function the
OBDD represents, becoming the best possible OBDD representation for that function.
BDDs have some interesting properties. They provide compact, canonical repre-
sentations of Boolean expressions, and there are efficient algorithms for performing
all kinds of logical operations on BDDs [25]. These operations include equivalence
checking, satisfiability test, satisfiability count, synthesis (computation of f ® g from
f ‘and‘ g, where ® is a Boolean operation), replacement of variables by functions (sub-
s‘tmmon), and redundancy test (“does f{ x;, ..., x,) depend on x;2”) [26]. Thesc opera-
tions are based on one characteristic BDDs have: for any Boolean function there is
exactly one BDD that represents it. Therefore, it is possible to test in constant time
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whether a BDD is constantly true or false [25]. Note that for this claim to remain true,
it is necessary to take into account the order of the variables in the BDD.

The main drawback presented by BDDs is that their efficiency, in terms of the time
required by their operations, depends on the size of the graph. The size, meaning the
number of nodes, is in tumn very strongly dependant on the ordering in which the
variables that make up the Boolean function represented by the BDD are processed
(i.e. the order in which these variables are passed to the algorithms that build the
BDD). A good ordering will give a relatively small graph, while a different order may
give a very large graph, whose size grows almost exponentially on the number of
variables. There is yet no formal method for finding optimal orderings. However,
there are some heuristic methods for finding orderings which do not yield BDDs with
exponential size, depending on the family of the Boolean function to be represented
[27]. One example of the BDDs dependency on ordering for efficiency is that of the
function (pl ~qy )v (pz /\q2) , shown in figure 1. When using the ordering
P1 < q; < p2< g3, the resulting BDD has 4 nodes, as in (a). On the other hand, when

using the ordering p; < p; < g; < g2, the resulting BDD has 6 nodes, as in (b).

(®)

Fig. 1. OBDD’s for Boolean function (plz\ql)v(pzf\qz): (a) with ordering

P1 < q; < Pp3 < qs, and (b) with ordering p; < p, < g, < g,. low(v) children are represented with
dotted lines, while high(v) are represented with solid lines

BDD’s have been applied in a wide number of fields. First of all, the obvious: to
represent and solve Boolean functions. However, some of their most important uses
have been formal verification of models, hardware verification (for instance, to ascer-
tain that an arithmetic circuit is correct), hardware design (as in CAD applications,
where BDDs are the state-of-the-art data structure for representing Boolean func-
tions), complexity theory analysis, planning in non-deterministic domains, image
compression, program verification, and cryptanalysis [2-8, 12, 25-28].

Some models used to represent different types of information have been devel-
oped, based on BDDs. For instance, Binary Moment Diagrams (and their improve-
ment Multiplicative Binary Moment Diagrams, proposed by Bryant and Chen; BMDs
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and *BMDs respectively) are used to overcome the weakness of BDDs before integer
multiplication, generalizing them in order to work within other ambits, such as integer
or real numbers [3-4]. Figure 2 shows the *BMD for the addition and multiplication
of two words of three bits each. The size of the graph grows linearly on the size of the

words, as reported by Bryant and Chen in [4].

[l [

Fig. 2. *BMD:s for (a) X + Y, and (b) X * Y, respectively. Both X and Y are words of size 3

X3

X7

X3

Fig. 3. Example of an implementation of \BDDs
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Another example is Boolean Functional Vectors (and Partially Ordered Boolean
Functional Vectors, proposed by Goel and Bryant in [10]), which represent a bit-level
decomposition of the state-set suitable for symbolic simulation, offering also an often
more compact representation than BDDs [9-10]. Read-k-times BDDs are another
variant, which relaxes some of the restrictions on order imposed by BDDs, allowing a
variable to be present more than once, which in turns yields better results in some
families of functions that had bad behaviour on BDDs. While there had been some
theoretical work in Read-k-times BDDs, even defining some different classes, Gun-
ther and Dreschler offer an implementation in [11]. Figure 3 shows an example of a
kBDD, the general class of Read-k-times BDDs.

3. Morphological Associative Memories

Basic concepts about associative memories were established three decades ago in [14-
15, 29], nonetheless here we use the concepts, results and notation introduced in the
Yaiiez-Marquez's PhD Thesis [13]. An associative memory M is a system that relates
input patterns, and output patterns, as follows: x—>M->y, with x and y being the input
and output pattern vectors, respectively. Each input vector forms an association with
a corresponding output vector. For k integer and positive, the corresponding associa-
tion will be denoted as (x" s y") - Associative memory M is represented by a matrix
whose jj-th component is m;. Memory M is generated from an a priori finite set of
known associations, known as the fundamental set of associations. If p is an index,

the fundamental set is represented as: {(x” 7% )‘ n=12K ,p } with p being the car-

dinality of the set. The patterns that form the fundamental set are called fundamental
patterns, If it holds that x* = y* Vu e {1,2,K D } , then M is autoassociative, oth-
erwise it is heteroassociative. In this latter case it is possible to establish that
3uef{1,2K,p} for which x“# y# . A distorted version of a pattern x* to be re-

called will be denoted as X*. If when feeding a distorted version of x” with
o= {1,2,K D } to an associative memory M, it happens that the output corresponds
exactly to the associated pattern y” , we say that recall is perfect.

Among the variety of associative memory models described in the scientific litera-
ture, there are two models that, because of their relevance, it is important to empha-
size: morphological associative memories, which were introduced by Ritter et al.
[21], and Alpha-Beta associative memories, which were introduced by Yafiez-
Mairquez [13, 22-23]. Because of their excellent characteristics, which allow them to
be superior in many aspects to other models for associative memories [21], morpho-
logical associative memories served as starter point for the creation and development
of the Alpha-Beta associative memories. Thus, both of these models greatly surpass
the limits shown by the classical models of associative memories, whether it is learn-
ing capacity, recalling accuracy and robustness before noise.

The morphological associative memories are of two kinds, min and max, and are
able to operate in two different modes, heteroassociative and autoassociative. In both
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cases the learning and recalling phases are based on the use of maximums and mini
mums of additions, as opposed to the classical models, which use convention:l s
operations for the learning phase and the addition of products for the recallin, m[amx
For the max morphological memories, the lcarning phase uses the maximum %fP ]33?'
tions, which is equivalent to the definition of the basic morphological operati: l;‘
dilation. On the other hand, for the learning phase of the min kind of morpholo, nicol
imum of additions is used, being this operation eqfiv:
lent to the basic morphological operation of erosion. It is due to this equivalence tha;
morphological associative memories have been given this name [24].

In general terms, morphological associative memories can handle real-valued pat-

terns. However, for the sake of simplicity and expediency, we will only work with

integer patterns in this paper.

associative memories, the min

3.1. The Minimum and Maximum Products

ogical associative memories operate, it is necessary to
define two basic operations, employed during both the learning and recalling phase
These two matrix operations are the minimum product and the maximum product.

>

which are explained below, as seen on [24].

Let D be a matrix [dj; e and H be a matrix [h,-j ]px" whose components are inte-
m product of D and H, denoted by C=DVH, gives as
and is defined as:

Before stating how morphol

ger numbers. The maximu
result a matrix C= I_cij men

P
ci =\/ (d,-k + h‘j)

k=1

0))

Two particular cases of great importance during the application of the maximum
product arise. The first is when D is a matrix with dimensions mxn and H is a column
vector of dimension 7. When applying equation 1 to compute the maximum product
C=DVH of D= ld,j J, and H= [hi]" a column vector C of dimension i is ob-

mxn
tained, whose i-th component is:
n
c,:v(d,-j+hj) @
j=!

Th.e second case is when the maximum product between a column vector of di
mension m and a row vector of dimension 7 is calculated. When applying equation 1-
to compute the maximum roduct C=DV =

p DVH of D= [d,-]m and H= |_/1j ]" a matrix

C= [c,j men is obtained:

i
€= >/ (s + ”ky’): (d + h‘i) X
(=1
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which can be simplified to ¢; = (d“ +hy )
Similarly, the minimum product C = DAH is defined as:
4 4)
¢y = /\(dfk +hy)
k=1

Both noteworthy cases arise with respect to the minimum product, just as hap-
pened with the maximum product. Their results can be obtained from equations 2 and
3, by substituting the maximum operator v by the minimum operator A.

3.2. The Learning and Recalling Phases

Because there are two kinds of morphological associative memories, vV and A , and
if we consider that each one of these kinds is able to operate in two different modes,
heteroassociative and autoassociative, we have four different available choices.
In this issue, we only talk about the morphological autoassociative memories of
kind V . Therefore, the fundamental set takes the form: {(x“ ,x# )\ #=12K,p } ;
Besides, the input and output patterns have the same dimension #, and the memory

is a square matrix: M = l’”i; o
n:

LEARNING PHASE
STEP 1:

For each x=12K,p , and from each couple (x” ,x# ) build the matrix:

o))

STEP 2:
Apply the binary V operator to the matrices obtained in step 1 to get M as:

P P

M= \/[x"A(—x"ﬂ = [’"ij],,x,. . The jj-th entry is given as m; =\/(x{‘ —xj.‘). It
p=1 u=1

is obvious that, v; €B,Vie { 1,2K ,n }, Vje { 1,2,K ,n}, where B = {0, 1} since we

are dealing with the binary version of morphological autoassociative memories.

nxn

RECALLING PHASE
A pattern x”, with w e {1,2,..., p} is presented to the morphological autoassocia-
tive memory of kind max and the following operation is done: y = MAx” . The re-

sult is a column vector y of dimension », with i-th component given as:
n
_ 7]
yi= /\(m,-j +xj )

A
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4. Merging BDDs and Morphological Associative Memories

Our core proposal consists of representing the operations r = xt=xt, s=m; +x7,

P ngo
V(’”) and /\(S’ ), by employing Binary Decision Diagrams, thus characterizing
p=l j=1
the learning and recalling phases of morphological associative memories on BDDs.
Given that the output of the operations to be characterized is not bound to the bi-
nary set but includes all integer numbers, the original model of BDD:s is not suitable
to this task. Rather, an extension to this model should be used for this purpose. In this

work, Binary Moment Diagrams [3-4] (BMD) are used.

(@ (®
Fig. 4. Characterization on BMD’s of the operations used during the learning phase:

P
(a) r=xt —xj-‘,and (b) V(r“)

p=l

One possible characterization on BDDs of the operations r=x/— x;‘-’ and

»
\/(r“ ), which make up the learning phase of a morphological autoassociative

4=l

memory of kind max, can be seen in figure 4, while figures 5 and 6 depict the opera-
n

tions used during the recalling phase: operation s = +xj’ and operation /\(s’ ),
j=

respectively.
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Fig. 5. Characterization on BMD’s of the operation s = my + x? , used during the recalling
phase

In the case of the v and A operations, both are done for three different variables.
Notice that, for more than three variables, there are two possible choices: either to
build the corresponding BMD for each particular value of p and/or n, or to compare
using only two (or three) variables, for as many times as necessary.

The main premise behind our proposal is that through the use of BDDs and their
variants to characterize the basic operations of morphological associative memories,
we can improve their implementation by lowering their arithmetic density. Also, once
the morphological memory model of a specific application has been characterized on
BDDs, all the previous results can be applied to the morphological memory too.
These results include the development of efficient data structures and associated algo-
rithms to manipulate Boolean and semi-Boolean functions [1-4, 9-12, 27-28].

Our vision is that by enhancing the low arithmetic density of morphological asso-
ciative memories when compared to other models (in particular to alpha-beta associa-
tive memories, its strongest competitor) we will further improve the model, allowing
it to be applied to fields in which it has found little interest by the scientific and in-
dustry community. Given that lower arithmetic density implies fewer basic opera-
tions, this means more efficient results, since larger patterns can be processed in less
time. This could lead to an extensive application of morphological associative memo-

ries to information retrieval, filtering, and extraction operations on extremely large
data bases, such as Bioinformatics (also referred to as Computational Biology). An-
other implication of this reduced density is the reduced quantity of circuits needed to
implement morphological memories on hardware, which would mean better response
times and lower power requirements. We strongly believe that this would lead to the
application of morphological associative memories on the solution of real time prob-
lems, such as control and automation.
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Fig. 6. Characterization on BMD’s of the operation A (s’ ), used during the recalling phase
Jj=1

Both the application of morphological associative memories to Bioinformatics and
their implememation on hardware are areas of great interest to the Alpha-Beta Group.
In fact, these two particular aspects are currently being researched and worked upon
by members of this group, although their final consequences have not yet been com-
pletely explored nor reached. Also, it remains to be seen just how much can the mor-
phological associative memories model be improved by employing BDDs, or if other
models can yield better results. The application of morphological associative memo-
ries to Data Mining remains practically unexplored, too, making it a new venue for
research. This particular area of research is somewhat related to their application to
Bioinformatics, since the basis is practically the same: extracting relevant information
from a huge repository of data. However, the specific characteristics of each area
could mean better results on one than those obtained on the other. In the end, further

work should be done here too.
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5. Conclusions

In this paper we propose the merging of two areas of computer science research that
have been quite successfully used to solve specific problems in a wide range of dif-
ferent fields, both in research and applications. These two areas, Binary Decision
Diagrams on one hand, and Morphological Associative Memories on the other hand,
and their derived variants, represent competitive models in their respective fields,
being also two areas of current and active research. We have presented some chal-
lenges that arise with the merging of these two areas, showing the feasibility of apply-
ing this merge to solve problems in several research areas.
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